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Convective instability of magnetic fluids under alternating magnetic fields
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A theoretical investigation of the convective instability problem in the thin horizontal layer of a magnetic
fluid heated from below and under alternating magnetic fields is carried out. Both the quasistationary model
and the model with internal rotation with vortex viscosity are considered. Floquet theory is used for discussing
the existence and stability boundaries of the differential equations with periodic coefficients. The Chebyshev
pseudospectral method is employed to discretize the partial differential equation, and QZ algorithm is used for
solving the eigenvalue problem. For quasistationary model, both free-free and rigid-rigid boundary cases are
considered, whereas for the model with internal rotation only rigid-rigid boundary condition is studied. The
effect of frequency variations on the stability are considered in all the cases.
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I. INTRODUCTION

Magnetic fluids are colloidal suspensions of fine stable
nanoscale magnetic particles in nonconducting liquids. The
particles are coated with a surfactant, whose dielectric prop-
erty matches with the carrier fluid, to prevent particles ag-
glomeration and coagulation. This coating also allows mag-
netic fluids to maintain fluidity even at very high magnetic
fields. Brownian motion, on the other hand, keeps the nano-
particles from settling under gravity or in an external field.
These fluids have found numerous applications (e.g., in loud-
speakers, rotatory and exclusion seals, bearings, dampers,
shock absorbers, medicine drug targeting, and in many ther-
mal transport applications [1-3].

Based on the consideration of particle-particle interaction
and the nature of magnetization relaxation, several forms of
basic equations, for magnetic fluids, have been proposed in
the literature. We feel that these can, roughly, be classified
into three categories. The earliest and foremost form is
known as quasistationary theory (also called ferrohydrody-
namics) [4], which has a wide range of applications [1-3]
and has, in some sense, guided further research in the area of
magnetic fluids. This theory, however, assumes that the mag-
netization is collinear with the applied field at all times. The
second category theory provides the allowance for the inter-
nal rotation of the nanoparticles and does not assume the
collinearity between magnetization and the magnetic field.
Instead it assumes the particles to relax following Brownian
relaxation and thus proposes a magnetization relaxation
equation [1,5,6]. Apart from some applications, similar to
those of [4], this second theory has been successful in ex-
plaining the magnetoviscous effects in magnetic fluids. Thus
it has been successful in theoretically describing the experi-
mental results of rotational viscosity (increase in fluid vis-
cosity with the increase of magnetic field) observed by
McTague [7]. This theory also has explained the negative
viscosity phenomenon (reduction of viscosity with increase
in frequency in an alternation magnetic field) [8,9] again
observed and verified experimentally [10,11]. The theory,
since it is based on single-particle calculations and does not
consider interaction between particles, is thus considered to
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be useful for dilute magnetic fluids. The third-category equa-
tions, considering particle-particle interactions, magnetiza-
tion relaxation, internal rotation, and asymmetric stress, have
also been suggested by several authors. Although there have
been attempts by various writers [1,12,13] to put forth suit-
able equations, Rosensweig [14] has recently developed a
complete set of basic equations derived on the basis of dy-
namic balance laws with a dissipation function determined
from thermodynamic considerations. This set of equations is
quite general and includes almost all other continuum theo-
ries previously published in all the categories.

In the present paper, we consider the convective instabil-
ity problem under an alternating magnetic field. This work is
thus complementary to our previous study [15]. In the
present case, however, since the differential equations are
with periodic coefficients, we employ FLOQUET theory to
provide stability boundaries. This leads to finding the eigen-
values of a momodromy matrix. To solve the eigenvalue
problem we employ the Chebyshev pseudospectral method.
We remark that convective stability problem in magnetic flu-
ids have been studied in a variety of situations and with
different degrees of success. In [15], we have provided some
references that mostly deal with dc magnetic fields, whether
the magnetic fluid is considered as single-component fluid or
a binary mixture. Other related references may also be found
in [1-3].

Here we consider both the quasistationary model and the
model of the magnetic fluid with internal rotation. In the case
of the quasistationary model we employ both free-free and
rigid-rigid boundary conditions. A qualitative analysis, in the
case of free-free boundary predicts the possibility of the phe-
nomenon of parametric resonance. In the model with internal
rotation we only consider the rigid-rigid boundary condition.
Here we find a sudden increase in the Rayleigh number val-
ues after an increase of the frequency over a certain value.
The effect on magnetic Rayleigh number is also significant,
and although the buoyancy Rayleigh number remains
bounded with further increase of frequency, the magnetic
Rayleigh number continues to grow as the frequency is in-
creased.
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II. BASIC EQUATIONS

We employ the equations governing the flow of an incom-
pressible magnetic fluid, as given in [1,5,6]

V.-u=0, (1)
D
P == VP + 0+ £)Vou+ (M - V)H
+2§r(V X w)_pgk7 (2)
Dw
poIE=2§r(V Xu-2)+pM X H, (3)
1
E=w><M——m(M—Meq) (4)
and
oM oM DH
C T VT+D.
{p vt~ ot aT]Dt MO(&T>VH D "
(5)

Here u=(u,v,w) is the velocity, D/Dt=0d/dt+u-V ,p the
density, P'=P+%,u0H2, w is the average spin velocity of
colloidal particles, # is the viscosity of carrier fluid, &, is the
vortex (rotational) viscosity, H is the magnetic field, M is the
magnetization, M, is equilibrium magnetization Mo 1s mag-
netic permeability (1n free space uy=4mXx 10~ H/m), pl is
the average moment of inertia of the colloidal particles per
unit volume, 7,, is the Brownian relaxation time, 7 is the
temperature, Cy g is the specific heat capacity at constant
volume and magnetic field, K, is the thermal conductivity,
and @ is the viscous dissipation. Maxwell’s equations in the
magnetostatic limit are

V-B=0, V XH=0, B=p,M+H). (6)

The density variation, on assuming Boussinesq approxima-
tion, is given as

pg = pogll - a(T-T,)], ()

where « is the thermal expansion coefficient and T, is aver-
age temperature. On neglecting the inertia of the colloidal
suspended particles, we can write (3) as

=—MXH V X
w 4§rM + ( u). (8)
On substituting (7) and (8) into (2) and (4), we get
D
pFl:—— VP + gV + (M- V)H+ OV X (M X H)
- pog[l — a(T-T,) ]k, )
DM 1
—==(VXu)XM-—M-M M X (M X H
B = 5% )X M= M) = M < 01 X H.
(10)

We consider a horizontal layer of an incompressible mag-
netic fluid heated from below. A Cartesian coordinate system
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(x,y,z) is used with the z axis normal to the layer that is
confined between horizontal plates z=—%d and z= %d. A con-
stant temperature gradient is maintained between the plates.
The temperature boundary conditions, thus, are

T=Tyatz=3d, T=T atz=—1d, T,=3(Ty+T)).
(11)

For velocity we employ no slip boundary conditions, #=0 on
the rigid plates. An alternating uniform magnetic field is ap-
plied normal to the plates. The magnetic boundary conditions
are that the tangential component of the magnetic field and
normal component of magnetic induction are continuous
across the boundary. The latter gives

Hsy+ My=H™ cos(Q,t), (12)

where the right-hand side of Eq. (12) represents the external
field.

II1. QUASISTATIONARY MODEL

The convective instability problem in a steady field using
this model has been studied by Finlayson [16] and Stiles and
Kagan [17]. In the absence of (&,,7,,), from Eq. (4), we ob-

tain

H
M =M, ="M Lay) = M, (H.T). (13)
1 mH
L(ay) = coth(ay) = —, =22 (14)
ay ka

In the limit of low magnetic field (i.e., a;<1), x, the

susceptibility, is constant and is given as

pomM, — pom®N

= (15)
3ksT,  3kyT,

Here m is the magnetic moment of the single particle, M,
=mN, is the saturation magnetization, «; is Langevin param-
eter, N is the number of magnetic dipoles per unit volume,
kp=1.38x 10723 J/K! is the Boltzman constant.

In the quiescent state, following Finlayson [16], we ex-

press
Meq=Ma+X(H_Ha)_Km(T_Ta)’ (16)

where x=(dM/dH)y 7 is tangent magnetic susceptibility
and K,,=—(oM/ (9T)H:’T: is called the pyromagnetic coeffi-
cient. In our case, H;<H;, H,<H;, and H;=~H,
=H, cos({),t), and simplifying Eq. (16), it gives

Meql = XHI ’
Mqu = XH27
M 3= xH, cos(Q,t) + x|H3 = Hy cos(Q,1)]

- TlHO cos(Q)(T-T,), (17)

a
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The quiescent state solution of the basic equations is
given to be

uw=0, T°=T,- Bz, (18)
Hszk(l - X—’BZ)H cos(€,1) (19)
T,(1+x)"" “r

. Bz
M —k<1 + 1 +X)>XHOCOS(Qat),

H* + M°* = (1 + x)H, cos(Q,1) = Hy" cos(Q,t), (20)

1 poBYH;
P'=-pgz—= o] 20,
P8z Zpgaﬂz 27 (1 +X)[ +c0s(2Q,1)]z
2 2H2
B XH 1 os(20,012 1)

AT (1 + A)?

To study the linear stability of the above solution, we now
perturb the variables appearing in the above equations. On
denoting the perturbation variables by primes, we write

(w.v.w.M .M, M_H_H, H_.P 6"
=[0,0,0,0,0,M3,0,0,H5,P°, T°]"
+[u' v w' MMM ,H.H.H,P',0']". (22)

At this point, it is convenient to introduce the following
dimensionless quantities:

. x . K \ Lo dh
X' =—, t= 5t 0 =—0", P =—+P,
d pCy pd Bd 7Ky
.1 1
w=—u, M=—M, H=—H, (23)
Ky XxHy H,

where the parameters Pr, Rg, M|, M,, M5, M4, x, & and T are
defined as

p’gaBCyyd’ K,
= N T= 2 Tm N
pCypd

C
pr=25v1 o

K, 7k,

£

=2 Q:M
n

Q ’
K, “
MoX °H %

__mBYCHG  pmoXHG
2 pCyn(1+ T,

1= il
pga(l +x)T.

_ MoXHg

eadl N=RgM,. (24)

Here Rg is the viscous Rayleigh number, N is magnetic Ray-
leigh number, and two other related parameters M, and M5
are denoted by
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M :(1+X)M1=,3_d

M;Rg p’g aCV,HTad3
4 = .
XM3 Ta

L+ )M, X7k,

The parameter M, turns out to be very small for all kind of
magnetic fluids [15,16] and hence is omitted in subsequent
calculations.

On substituting (22) into Egs. (9), (5), (6), and (1), and
using dimensionless parameters (23) and (24), and writing
M'=xH' and H' =V ¢, after dropping the prime and aster-
isk, we obtain the linearized equations as

s 5

1 du dp P
l?rE =- E + VZu + My cos(Qr) (xM, +M1z)@,
(25)
law 4 s
—2__P + V20 + M5 cos(Q1) (xM; +Mlz)—¢,
Pr ot ady dzdy
(26)
low_ & o >
a2 + Vow + M5 cos(Qt)(xM5 + M, z) P
20 )
—XM1M5(9— —[1+ M, cos*(Q1r)]Rg#, (27)
Z
a0
o =V 0+w, (28)
a0
(1+x)V2p—xM, cos(Qt)&— =0, (29)
Z
ou dv ow
—+—+—=0. (30)
ox dy Iz

On taking curlcurl of Egs. (25)—(27), the vertical component
of the resulting equation gives

1 V2w
I Viw +Rg[1 + M, cos*(Q1)]V3i0
V3
— M;Rg cos(Qr) (?1 ¢ (31)
74

where V%:[(&zl dx?)+(8*/ dy*)]. The boundary conditions for
velocity and temperature, for the two cases are [18]

Pw 1
w=—>5=60=0, z==x—, (free-free boundary)
oz 2
(32)
aw 1 C
W= (9— =0=0, z==+ > (rigid-rigid boundary)
Z

(33)

The magnetic boundary conditions are that the normal com-
ponent of magnetic induction and tangential component of
magnetic field are continuous across the boundary
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dp  dp Y b I 1
= b = 9 MZ + = b Z = i - 9
ox  ox dy dy oz oz 2

(34)

where ¢ is the magnetic potential outside of fluid, and it
satisfies

V=0, [|=3. (35)

In view of the linear relation between magnetization and
magnetic field, the above conditions reduce to [16,17]

atz= = (36)

D | =

(1+X)(;—d)i¢=0,
vé

A. Free-free boundary

We first consider the ideal case of free-free boundary.
These conditions would be feasible for free perfectly heat-
conducting boundaries made of a superconductor. Since
magnetic field perturbations do not penetrate into such a
wall, conditions (36) reduce to

i

1
=0, atz=+ —. 37
Py 2= %7 (37)

Moreover, in order to reduce the relevant equations in the
same form as to those of Finlayson [16], we nondimension-
alize the magnetic potential ¢ as ¢=(B8d/T,)x/(1+x)]d’,
and omitting the dashes, Egs. (31), (29), and (28) now be-
come

1 V2
b (%W = V4w +Rg[1+ M, cos’(Q)]V3e
Vi
—RgM, cos(Qr) (38)
0z
06
V2 —cos(Qr)— =0, (39)
0z
a0
—-V20=w. (40)
ot

On assuming a periodic dependence of the variables on hori-
zontal coordinates, we take w, 6, and ¢ in (38)—(40) of the
form

(w, 6, ) = w(z,1), 0(z,1), plz, 1)} (41)
On substituting (41) into (38)—(40), we obtain
I%r(p2 — k)W = (D* - k*)*w =—K*[Rg + N cos>(Qr)]6
+ Nk cos(Q)Dp,  (42)
(D* - k*) ¢p = cos(Q1)D 6, (43)

- (D>~ 1) 6=w, (44)
where D=0/ dz and k*=k; +k;.
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In order to satisfy boundary conditions (32) and (37), we
select

0=b(r)cos(mz), ¢=c(t)sin(mz).

(45)

w =a(t)cos(mz),

Substitution of (45) into (42)—(44) leads to
Pri(7? + k2)a+ (7 + k) %a
= k*[Rg + N cos*(Q21)]b — wk>N cos(Q1)c,

b+ (P +kb=a, (7+k%)c=mcos(Q)b, (46)

where the dots denote derivative with respect to time ¢. On
eliminating @ and ¢ in (46), we arrive at

Pri(m + k2% + (Pr' + 1)(7 + K2)°b + (72 + k2)*b

= K’[(7 + K*)Rg + k>N cos(Q1)]b. (47)
On making the following substitutions in (47):
: f a T B Q
(@ (PP (P )P
(48)
we finally obtain
d* _
dTJ;+2e—f+[l Rg—-N-NcosQyn)]f=0, (49)
where
_  Rg _ N (7 + k*)?
Rg=—=, 2N=—, Ry=—5—,
R, N, K
(7 + 1) 1
No=—7—, 2e=|\Pr+—=
k \Pr

In the above equation, we note that, R, is the critical Ray-
leigh number in the absence of a magnetic field and N is the
critical magnetic Rayleigh number in a stationary field in the
absence of gravity. If we now further let

f=0e™*, B=vy1
in Eq. (49), it reduces to the standard form of the Mathieu
equation
2

d,82+[p g cos(2B)]o=0, (50)
where
1y Rgk? Ni* 2 (7 + k*)Pr
PR T @iy T (Pt o
4
NK*Pr 51)

T

and where Rg and N are defined in (24).
The solution to the Mathieu equation (50) is of the form

[19]
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o(B) = Ae*P i B) + Be *Pyi— B) (52)

where A and B are constants and () is the periodic func-
tion with period 7 or 27 and w is the characteristic or FLO-
QUET exponent, which is a function of p and ¢. Thus, de-
pending on the nature of u, the solution may be unstable,
stable and periodic, and stable and nonperiodic. The deter-
mination of u, however, requires extensive calculations of
Hill’s determinants, etc. We follow the alternate method to
study the qualitative behavior of the Mathieu equation by
using the stability diagram, including the effects of damping.
The stability diagram Fig. 1(a) is reproduced from the data of
McLachlan [20].

Figure 1(a) shows the plot of p against ¢ and the exact
location of the boundaries between stable and unstable solu-
tions. The plane is divided up into discrete regions. The dia-
gram is symmetrical about p axis. It can be seen that if the
point (p,q) lies in any of the shaded regions in Fig. 1(a), the
solutions of the Mathieu equations are unstable. The solu-
tions are oscillatory but with exponentially increasing ampli-
tude. However, if the point (p,q) lies in any one of the un-
shaded regions, the solutions are stable, again being
oscillatory, though not regularly periodic. In the case of un-
stable solutions, there is exact periodicity of 7 or 27 in S.
Moreover, it can be seen from the figure that parametric reso-
nance between forced and free oscillations occurs when g is
small and p is close to an integer value.

With regard to the solution in our case, we note, from (51)
that g is always positive, but p could be positive or negative
depending on the parameters Rg, N, €, Pr, ), and k. The
stability nature thus depends, as expected, on these param-
eters. We also note from the figure that, for the point (p,q) to
lie in the stable region, p has to be positive and possibly
large and ¢ has to be small. In order for p to be positive, we
require

K2 NK?
1>{(72+k2)3(Rg+(ﬂ2+k2)>+62}. (53)

Inequality (53) can be satisfied in only very special circum-
stances. In the case of the plane layer heated from below,
both Rg and N are expected to be positive and € is always
positive. In fact €=1 if \Pr=1 and €>1 if \Pr>1, and
€ <1 if \Pr<1. Thus the likelihood of p being negative is
favorable. The other possibility of p being large is when () is
small. However, when () is small then g becomes large. Thus
it appears that the point (p,q) in our case is likely to lie in
the shaded region; that is, the phenomenon of parametric
resonance will be observed. We note that as ()—o, p—0
and g — 0, and thus the stability character reduces to those of
the basic state.

Returning to the solution for f or b(r), we note that f
=o0e " and the damping term ™" has a stabilizing influence
on the solution. In relation to the characteristic exponent g,
the exponential factor now becomes [,uQ—%(Pr+1)(772
+k2)]r. The stability criterion in this case is (Pr+1)(m+k?)
>2uf). Thus for low values (), and depending on the values
of Pr, u, and k, this inequality may be satisfied. For higher
values of (), it has good possibility of being violated.
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FIG. 1. (a) Stability diagram for the solutions of Mathieu’s
equation [20]. (b) Stability diagram for Mathieu equations including
the effects of damping. The lined area is the stable region.

The damping effect is exhibited in Fig. 1(b). This figure is
drawn for small values of (p,q); for higher values of (p,q),
predictions are evident. Also the shaded region in this figure
represents the stable region. The damping-effect region has
been marked with broken lines for different values of w. It
can be seen from the figure that the effect of damping is to
reduce instability regions at lower values of ¢. For higher
values of g, the effect is considerably less appreciable. Thus
we remark that although, with damping effect, the stable re-
gions cover a greater area of stability in the diagram, the
unstable regions are not completely eliminated. There is,
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thus, always the possibility of resonance phenomenon.

B. Rigid-rigid boundary

In the case of the rigid-rigid boundary condition, it is not
possible to obtain an analytical solution and we have to
revent to numerical methods.

In order to match the domain of Chebyshev
pseudospectral-QZ method, we first reset the present domain
from [—% , %] to [—1, 1] with coordinate transformation of z to
2z in Egs. (31), (28), and (29), and in the boundary condi-
tions. We perform the standard normal mode analysis and
look for the solution of variables w, 6, and ¢ in the form
(41). The form of boundary conditions for magnetic field in
the new domain are

a
MZ+2&—¢¢1<¢=0, atz=+1. (54)
Z

On substituting (41) into Egs. (31), (28), and (29), in the new
domain, we obtain a set of differential equation in w(z,?),
6(z,t), and ¢(z,1). The discretized form of these equations
along with the new boundary conditions are given in the
following section, where we present the numerical solution
of the resulting equations.

IV. MODEL WITH INTERNAL ROTATION

For the nonzero vortex viscosity model, both the coeffi-
cients (£, 7) should be considered. The magnetization equa-
tion (10) and the rotational viscosity should be included in
the analysis.

The quiescent state solution of the basic equations with
corresponding rigid boundary conditions in the low-
magnetization limit is given to be

u'=0, T"=T,-Bz, (55)

XHo[(1+ )T+ fBz]
Tol(1+ x)* + (75Q,)*]

H* =k{(1 + x)H, cos(Q,1) —
X[(1 + x)cos(Q,1) + TOQasin(Qat)]}, (56)
o XH[(1+ )70+ Bz]

Tol(1 + x)? + (752,)°]
+ 750, sin(Q1)], (57)

[(1 + x)cos(Q,1)

H* + M° =k(1 + x)H, cos(Q,1) = kHg" cos(Q,1), (58)

P — pere L B poBYH2(1 + X)To + Bzl
PR PSR T AP 4 )+ ()]
 mBXCHA2(1+ )Ty + Bzl
AT (1 + xD)? + (7Q,) ]
- (TOQa)Z]cos(ZQat) +2(1 + x) 702, sin(2Q,1)}.
(59)

{{(1+x?)?
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As in Sec. III, we now perturb the variables appearing in
the above equations. On denoting the perturbation variables
by primes, we write

[u,v,w.M M, M_H_ H,H_,P,60]"
=[0.0,0,0,0,M3,0,0,H3,P°, T°]"
+[u' v’ W' M, M| ,M,H,,H,H,P",6']". (60)

On using dimensionless equations (23) and (24), and writing
H'=V ¢, after dropping the prime and asterisk, the linear-
ized equations are given

1 du ap 1 dp 1

——=——+Viu——yReM;— + —yyM;[Rgz + M

Pr ot o u 2¢1 g 3ox 2¢1 3[Rgz sX

Fo 1 1
X(1+x)]—— = s xRgM3M . — ~[ i, xRgM 3z
dzox 2 2

M,
— ox(1 + x)M;3M;] PR (61)
1 ov op 1 dp 1
——=-—+Vu— - RgM;— + ~yyM3[Rgz + M
Prar - v 2w1g3&y S s[Rgz+Msx
PP 1 1
X (1 + X)]@ - EIJIIXRgMaMy - 5[¢1XRgM32
M,
—ox(1+ X)M3M5]7ZX, (62)
Lo vy T X Mcos(0,0V20
——=-— -— cos
Pr ot 0z v 2 33 “

1 PP 1
+ E¢1M3[Rg2 +Msx(1+ X)](9_Z2 - ElﬂlXRgM,%Mz

1 oM,
- E[%XRgMﬂ - ihx(1+ X)M3M5]0_z +Rg#,

(63)

IM, 1 1 . ow
=V—— (M o+ (Myz+ 1+ )| — - —
T 2 0z

o ox
1149
+{m+—}f, (64)
T ox
oM , 1 1 dv  ow
== (M + i (Myz+ 1 (—-—)
P {% T} y+2'J/l( 2Z+1+)) PREPN
1149
+{m+—}f, (65)
T) dy
oM . 1 140 1
—=—--M_+ 1og_ —M, cos(Qt) 08—y Myw, (66)
ot T TdZ T
oM oM, M,
Vi + ( x+—l+—”>=0, (67)
ox dy oz
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o .
ax dy oz
%f=V20+ w, (69)
where
_ (1 + x)cos(Qt) + Q7sin(€2r)
L T ST (70)
[+ x+ (7Q2)*]cos(Qt) — Qry sin(€2r) an
2 (1+ )%+ (Q7? :
1 MR 1 MM
=" +X4)§‘ g *Xig O - )
1+ x)*MsM
_%%‘/’2, (72)
1+ xy)MR 1+ x)*M M
¢4=( +Z§X1 gl//%zz+( +X2§ =z
1+ x)°M3M
+%§35% )

On taking curlcurl of Egs. (61)—(63), the vertical component
of the resulting equation gives

1 Viw 5 s 1
b Py =V*'w+RgVi6- xM;Rgy,V MZ+E)(M3
VM,
X[(1+ x)Msih, — Rgy 2] P - M;Rgy,
V¢ 1 PV
X -—M 1+ x)Ms+R
= 2 s x(1 + )M+ Rgz] P
1+
+ TXM3M5 cos(Q) Ve (74)
where  V2=(#/ax*+P19y*+#137%), and  Vi=(P/ox’
+*19y?).

Taking divergence of magnetization equations (64)—(66),
and using (67), we get
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EARl oM

ot =x¥s 9z

00
< X, cos(Q)Z — (14 y)
T 0z
T.x 2
x| —+ 4§(1 + X+ Myz) Yy MsMs cos(Qt) |V
T

>
+ ﬁ(l + X+M4z)2¢%M3M5£

ow
+ )5((1 + X+ M2 Vo + XMt (75)
4
We have four equations (66), (69), (74), and (75) for four
variables w, M_, ¢, and 6.
We perform the standard normal mode analysis and look
for the solution of variables w, M_, ¢, and 6 in the form

w w(z,t)

Ml | M0 ot + k)] (76)
¢ = ¢(Z’t) eXp Xx yy l].

0 0(z,1)

On substituting (76) into Egs. (66), (69), (74), and (75), and
transferring them in the new domain, we obtain a set of
differential equations in w(z,t), M(z,1), 6(z,1), and ¢(z,1).
The discretized form of these equations along with the new
boundary conditions are given in Sec. V.

V. NUMERICAL RESULTS

In our previous paper [15] a short account of the Cheby-
shev pseudospectral Tau method was given. Briefly it in-
volves the expansion of unknown variables in Chebyshev
polynomials in which the integration in determining the co-
efficients is replaced by a numerical discrete integral on col-
location points.

After discretizing by the Chebyshev pseudospectral
method, equations of the quasistationary model can be writ-
ten in the matrix form as

X
BE =[Ag+cos(Q)A; + cos(2Q1)A, X, (77)

where variables vector X
=[W0,W1, . 00, 61, ,(f)o,(ﬁz, ], (Wi’ Gi,¢i,i=0, ,N
are values of w, 6, and ¢ on discrete collocation points), and
matrices B, Ay, A, and A, can be expressed as

1
—(4D*-K) 0 0
Pr

= i 78
0 I 0 (78)
0 00
(16D* = 8k*D? + k*I) - 3(2 + M|)Rgk’l 0
Ay= I 4D - 11 0 , (79)
0 0 —(1+x)(4D*-K*I)
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0 0  2M;RgkD
A;=|0 0 0 , (80)
0 2yM,D 0

0 —3MRgk’T 0

A,=]0 0 0l (81)
0 0 0
I
where k2=k)2(+k3, matrix D is differentiation matrix intro- 0 A2 A 0
duced in [15], I is an identity matrix.
.. . . M4(1 + X) M4
Boundary conditions in discrete form are - A7 0 0 k. § o
4 (1+x)*+(Q7)? T
1 = b
2xM
N-1 N-1 Ay 0 0 et D
WOZWNZEDO,]‘ j=2DN,jo=‘90=9N=0, T
j=1 j=1 0 0 0 0
) (86)
N N
2(1+x) 2 Do jb;— kpy=2(1+ x) X, Dy ;¢bj + kpy=0. 0 0 0 0
=0 =0 0 0 0 0
82 Ay= , (87)
82) 2710 Aysn Axsy 0
After discretizing with the Chebyshev pseudospectral 0 0 0 0

method, equations with the internal rotation model can be
written in the matrix form as - -

0 Aza) Aszas 0
X M4—m1 0 0 0
BE =[Ag+ cos(Qr)A; + cos(2Q1)A, + sin(Q)A 5 As= (1+ )%+ (Qn? . (88)
+5sin(2Q0A,4)X, (83) A3z 0 0 0
0
where variables vector X
=[W0,W1’"',Mzo,le,'",¢0,¢2,"',90,01,"']. In this 0 0 0 0
case the matrices B, Ay, A|, A,, A3, and A4 can be expressed 0 0 0 0
Ay= , (89)
_ _ 0 A432 A4z O
1 0 0 0 0
—@4D?*-KI) 0 0 0
Pr
B= 0 7 0 ol. (84) where
0 0 4D*-KT 0 2
X M3M;s 202
A = MiZ”—2(1 — x )M, Z
i 0 0 0 I 062 = 61 + 0 4 Qo XMz -2 XMy
-4(1+°0D,
16D* - 8k°D*+ kI 0 0  —RgkI
1 2 XM3Ms 22 )
_— = A = 2xYMLZ" —4(1 — x )M, Z
4= 0 7_I 7_D 0 , 0(3,3) 1640(1+ X)2+ (QT)Z]{[ XMy (1-x )M,
Agza) Agaa) 0 —8(1+ )’ IID* + (1 + x)*M,K*Z + 2(1 + x)*k°T}
0 0 4D*-KI 1+
L . _M(4D2_k21)’
(85) T
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x(1+ )M
A =———F————({-2RegZ +4[1
1(1,2) (1 +X)2+(QT)2({ gl + [ +X

+(QD2IMIID? — 4RgD? + 1k*{RgZ - 2[1 + x
+(Q7)?IMsID + RgkT),

(1+ x)M;
A =——F——({—-4RgZ + §| 1
1(1,3) (1+)()2+(Q7')2({ gZ +8[1+x

+(Q7)2IMIID* — 8RgD? + kK[RgZ — 2[ x* + 3x + 2
+2(Q12IMIID? + 2kRgD + M sk*[(1 + x)?
+(Qn),

X(1+x)

A =—>—2 S [MJZ+2(1 + )ID* +2M ,D
1(3,1) (1+)()2+(QT)2{[ 4 ( X)] 4

- ‘l—lkz[M4Z +2(1+ X)I]},

X*M3Ms
164 (1 + x)>+ (Q7
—2(1+ (1 + 01 = X)) + (1 +30)(Qn*IM,Z
—4(1+ x)’[(1 + 0%+ (1 +20(QD*ILD,

Ayi)= 2]2{;([(1 + X% - Q2 IM;2?

Agss) = XM3M 5
G716 (1 + x)? + (Q7)
—4(1+ YL+ (1= X)) + (1 +30(QD)*IM4Z
=8(1+ x)7[(1+ x)* + (1 +2))(Q)*IM,I}D?
+(1+x)[(1+ )+ QD2 MZ + 2(1 + YI)),

P {2x(1 + %) - (0 IM3Z?

xM;Qr

A3(1!2) = m{[— Q,RgZ - 4X(1 + X)MSI]D%

1
—4RgD? + Ekz[RgZ +2x(1 + Y)MSIID + ng%},

M3QT
A =———— [ 4RegZ - 8x(1 MI|D*
3(1,3) (1 +X)2+ (QT)Z{[ g x(1+ x)MsI]

— 8RgD? + k[RgZ + 2x(1 + x)MsI|D?* + 2Rgk*D?},

xQr

Aza = m{[MJ +2(1 + x)ID?*+2M,D

1
- Zkz[M4Z +2(1+ X)I]},
X1+ X)MsMsQr

A4(3,2) = 8§[(1 + X)2 + (QT)Z]Q{XM?&ZZ - [1 -2x- 3X2

+ QD IMLZ - 2(1 + )1 = ¥* + (QD?ILD,
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Ausy = x(1+ Y)M3MsQr (
> 164 (1 + x)> + (O]
=32+ (QDHZ -8(1 + Y[1 - x* + (U }D?
+ L1+ 3)?+ (QDAIMZ +2(1 + YI]).  (90)

{4xM3Z% - aM[1 -2y

Here Z is the diagonal coordinate matrix [15]. Boundary
conditions in discrete form can be expressed as

N-1 N-1
WO=WN=2DO,/' j=EDN,jo=00=0N=O’
j=1 J=1

N N
MZO + 22 DO,](vbj - k¢0: MZN+ 22 DN,]¢]+ k(vbN: O
Jj=0 j=0

o1

The matrix B in (78) for quasistationary model (77) is not
a full-rank matrix. We have cos(Q¢)2xM D 0—(1+ x)(4D?
—k’I)p=0. Substituting variable vector ¢ into (77) and
implementing the boundary condition (82), Eq. (77) can be
written as

|:Bl,l BI,Z] X, B |:A1,1(t) A (1) } |:X1 } 92)

0 0 XZ BC2’1 Bc2,2 X2 '
Variable vector X, are the boundary points and the outer-

most internal points for Chebyshev pseudospectral method.

If matrix Bc,, is not singular, the variable vector X, can be
condensed and Eq. (92) becomes

X = (B, —B1,2305,12302,1]_1[140)1,1 —A(l)l,zBCE,lchz,l]Xl-
(93)

Proceeding exactly in the same manner, Eq. (83) can be
expressed similar to the Eq. (93). Thus after condensing X,
Egs. (77) and (83) each has the form

X=A0X. (94)

Here A (1) is periodic in time with period 7=2/(),. Accord-
ing to FLOQUET theory [19] any solution of Egs. (94) has
following form:

X(1) = yXo(1) = VX, (1) (95)

with X () and X,(7) as vector functions, X,(7) is periodic, and
v is the FLOQUET multiplier. From FLOQUET theory, mono-
dromy matrix can be computed numerically as described in
[21].

Let Y(1)=[X,(1),X,(1), --,X,(r)] be a set of linearly in-
dependent solutions of Eq. (94), then Y(0)M=Y(T), and M is
called the monodromy matrix.

For every X;(0) as the initial condition, using numerical
integration to integrate Eq. (94) for a period T, we have the
vector X;(T). Repeating from i=1 to i=n, we have mono-
drony matrix M=Y(0)"'Y(T). We choose Y(0), an identity
matrix, and have M=Y(T). The eigenvalues of monodromy
matrix are FLOQUET multipliers 7y,. Equation (94) is stable
when the modulus of any multiplier |y,| does not exceed
unity. If multipliers are ordered, |y,|=|vy,|=--- =]y, then
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FIG. 2. Plot of critical Rayleigh number Rg, against frequency
for water-based magnetic fluid for different aL (model with internal
rotation, thickness=1 mm): (a) a;=0.2, (b) a;=0.4, (¢) a;=0.6, (d)
a;=0.8, and (e) a;=1.0.

|y1/=1 corresponds the instability boundary and determines
critical parameters.

In this work, the operations of equations are carried by
MAPLE program and numerical calculation by MATLAB pro-
gram. The procedure and algorithms of numerical analysis is
as follows. For a given 8, wave number k and H, with other
physical parameters, we build monodromy matrix by inte-
grating Eq. (94) in the time domain for a period T using the
ODEI5S function of the MATLAB program, which uses back-
ward differentiation formulas.

The QZ algorithm, EIG function in MATLAB, was used to
compute the eigenvalues of monodromy matrix. We find the
maximum modulus of eigenvalue |y,| for corresponding
wave number k. Adjusting 8 by the secant method, we get
the temperature gradient 8 when the modulus |y,|=1.

We then follow the algorithm for determining neutral sta-
bility curves [22]. From the neutral stability curves (3,k),
the critical temperature gradient 8 with critical wave number
k. can be defined as

B.=min B(Pr,Hy, -**). (96)
k

The minimization of Eq. (96) is carried out by the function
FMINBND of MATLAB, which is a combination searching of

10°F

108 ¢ /'.

1074 A

zo106 ]

105 o=d
F —l—b

104 —h—
- S c

103+ ——d
. —k—

102 - L - P T e
1 102 104 108 108

f(Hz)

FIG. 3. Plot of critical magnetic Rayleigh number N, against
frequency (model with internal rotation, thickness=1 mm): (a) a;
=0.2, (b) a;=04, (¢) a;=0.6, (d) @;=0.8, and (e) a;=1.0.
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FIG. 4. Plot of Rg,. against frequency fin a water-based magnetic
fluid (quasistationary model, thickness=1 mm): (a) a;=0.2, (b)
CYL=0.4, (C) CYLZO.6, (d) CVL=0.8, and (e) aL=l.0.

gold section and parabolic method. Rg, and N, are calculated
by Eq. (24) using ..

In our numerical calculations we consider a magnetic
fluid with fixed magnetic particles (M,=4.46X10° A/m)
and diameters (d=10 nm). Table 1, in our previous work
[15] (which is taken from [1]), provides the physical proper-
ties. In the following calculations, we have computed vortex
viscosity &, by the formula &,= % ne and Brownian relaxation
time 7,,=3Vn/KgT. Here V is the particle effective hydrody-
namic volume, and KT is thermal energy.

First, we checked the algorithms with the monodromy
matrix. For alternating frequency f=0 Hz, i.e., in the absence
of oscillating behavior we apply both the above-described
algorithms and the algorithms discussed in [15]. We find al-
most identical results for both Rg. and N.. In the following
we will consider both cases, i.e., when the convection is
driven by both gravity and magnetic field and when it is only
driven by magnetic forces. In our discussion we have taken
the thin layer thickness d=0.001 m and f is defined as f
=Q,/2m.

Figure 2 shows the plot of Rayleigh number Rg, against
the frequency f for different a; values in the water-based
magnetic fluid. Up to the values of f=1X 10* Hz, we note
only the effect of the variation of the magnetic field. Thus,

107 ¢

| )

108 +
Z 105 ¢
— —_—
4+ R ——
i ab
103
1 2 3 4 5

Wave number k

FIG. 5. Variation of magnetic Rayleigh number N with the wave
number k for water-based magnetic fluid (model with internal rota-
tion, thickness=1 mm, a;=0.4): (a) f=10? Hz, (b) f=10% Hz, (c)
f=5x%10* Hz, and (d) f=10° Hz.
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FIG. 6. Variation of Rayleigh number Rg with the wave number
k for water-based magnetic fluid (model with internal rotation,
thickness=1 mm, a;=0.4): (a) f=10%> Hz, (b) f=10° Hz, (c) f=5
X 10* Hz, and (d) f=10° Hz.

we find that as the magnetic field increases, Rg,. decreases,
indicating that the convection would initiate earlier for
higher magnetic field values. Around f=10* Hz, and greater
than this value, there is a sudden increase in Rg,. values for,
almost all values of ¢;. This increase in Rg. values continues
up to f=10° Hz and then it becomes steady in almost all
cases. With 7,=2.67 X 100 s, for water I, we note that as f
varies between 10* and 10°, Q,7,,=2mf7, varies between
0.168 and 16.8. We also note from Fig. 2 that, between 10°
sf< 107, all the curves flatten, indicating the maximin and
minimum values of (),7,. The situation, in the magnetic
Rayleigh number case (gravity free) is somewhat similar.
Here we do not observe, (see Fig. 3) variation in N, values
up to f=10% but then again there is a sudden increase in N,
values as f increases beyond f= 10*. There is, however, one
significant difference at these higher values. Although in the
case of Rg, critical, the values beyond f=10* become steady,
(very close to standard Bénard problem Rg,=1707), in the
case of N, critical these remain unbounded. This means that
in the case when buoyancy forces are negligible and if the
frequency increases indefinitely, there will be no convection
possible. This may be related to the kind of magnetization
equation used in our work.

Figure 4 plots the Rg, against f for a quasistationary
model. Here we note that increasing frequency has, essen-
tially, very little effect on Rg,. values. However, increasing
a; (i.e., the magnetic field) has a destabilizing effect. Both
frequency change and magnetic field change have virtually
no effect when convection is due to magnetic forces only.
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FIG. 7. Variation of critical Rayleigh number Rg. against fre-
quency f for different ester based magnetic fluid (model with inter-
nal rotation, thickness=1 mm, a; =1.0): (a) ester I, (b) ester II, and
(c) ester III.

Figures 5 and 6 present neutral curves of magnetic insta-
bility for several values of the frequency f. In the quasista-
tionary model, there is essentially no effect of frequency
variation, and therefore the graphs are not presented. In the
particle rotation model, there is some difference with the
frequency and wave-number variation. Again minimum oc-
curs at much lower values in Rg, as compared to N, but
around the same wave number in each case.

In order to check whether ester-based magnetic fluids will
behave similar to water-based fluids or not, we carried out
calculations with ester I, II, and III base magnetic fluids.
Figure 7 shows the plot of critical Rg, against f for ester I, II,
and IIT at a;; =1. Here we note that while ester I base behaves
much like the water-based magnetic fluid, there is some dif-
ference with ester II and ester III based magnetic fluids. It
appears that ester I is more stable than the two other mag-
netic fluids. Again near f=10* Hz, we find a sudden change
in the stability character for all three base fluids. The graphs
between N, and f for different ester-based fluids were also
plotted. But since these turn out to be similar to those of Fig.
7, these are not reported.
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